TAL Effectors Specificity Stems from Negative Discrimination

نویسندگان

  • Basile I. M. Wicky
  • Marco Stenta
  • Matteo Dal Peraro
چکیده

Transcription Activator-Like (TAL) effectors are DNA-binding proteins secreted by phytopathogenic bacteria that interfere with native cellular functions by binding to plant DNA promoters. The key element of their architecture is a domain of tandem-repeats with almost identical sequences. Most of the polymorphism is located at two consecutive amino acids termed Repeat Variable Diresidue (RVD). The discovery of a direct link between the RVD composition and the targeted nucleotide allowed the design of TAL-derived DNA-binding tools with programmable specificities that revolutionized the field of genome engineering. Despite structural data, the molecular origins of this specificity as well as the recognition mechanism have remained unclear. Molecular simulations of the recent crystal structures suggest that most of the protein-DNA binding energy originates from non-specific interactions between the DNA backbone and non-variable residues, while RVDs contributions are negligible. Based on dynamical and energetic considerations we postulate that, while the first RVD residue promotes helix breaks--allowing folding of TAL as a DNA-wrapping super-helix--the second provides specificity through a negative discrimination of matches. Furthermore, we propose a simple pharmacophore-like model for the rationalization of RVD-DNA interactions and the interpretation of experimental findings concerning shared affinities and binding efficiencies. The explanatory paradigm presented herein provides a better comprehension of this elegant architecture and we hope will allow for improved designs of TAL-derived biotechnological tools.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supporting Information Material for TAL effectors specificity stems from negative discrimination

Table of Content SUPPORTING METHODS ...................................................................................................................... 2 Set-up and simulation protocol for molecular dynamics ................................................................ 2 Binding energy calculations ..............................................................................................

متن کامل

TAL effectors from Xanthomonas: design of a programmable DNA-binding specificity

Xanthomonas spp. are Gram-negative bacteria with powerful molecular weapons to attack their plant hosts. Key for pathogenicity of Xanthomonas is a type III secretion system that injects a cocktail of effector proteins into plant cells to function as potent virulence factors. TAL (transcription activator-like) effectors from Xanthomonas function as transcriptional activators of plant genes in th...

متن کامل

The Roles of TAL Effectors in Nature in Relation to their Unique Properties as DNA-Targeting Tools

I will present perspectives on the unique properties of TAL effectors as DNA-targeting tools, and what we can gain from understanding how they work in nature and in plant disease. I’ll begin by comparing and contrasting the CRISPR/Cas9 and TAL-effector nuclease (TALEN) systems to highlight some of the unique features of the latter (Figure 1). TAL-effector nucleases work as dimer proteins. Each ...

متن کامل

Predicting promoters targeted by TAL effectors in plant genomes: from dream to reality

INTRODUCTION Transcription Activator-Like (TAL) effectors from the plant pathogenic bacteria of the genus Xanthomonas are molecular weapons injected into eukaryotic cells to modulate the host transcriptome. Upon delivery, TAL effectors localize into the host cell nucleus and bind to the promoter of plant susceptibility (S) genes to activate their expression and thereby facilitate bacterial mult...

متن کامل

Computational Predictions Provide Insights into the Biology of TAL Effector Target Sites

Transcription activator-like (TAL) effectors are injected into host plant cells by Xanthomonas bacteria to function as transcriptional activators for the benefit of the pathogen. The DNA binding domain of TAL effectors is composed of conserved amino acid repeat structures containing repeat-variable diresidues (RVDs) that determine DNA binding specificity. In this paper, we present TALgetter, a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013